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EMH and RW 

CLM Chapter 2

Data and Statistics

• It is important to understand the difficulties 
associated with estimating something as simple as 
the mean return.

• We focus on now are the properties of estimates of
– Means
– Other moments
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Mean and Variance Estimation

• The sample mean and sample variance are given by:
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Note: For financial series with frequency lower than monthly, the second 
term is very small (negligible) relative to the first. It can be ignored.

Example: Weekly Japanese returns (1980-1996, T=847)
Mean = 0.257%  and SD = 3.095%. 
The squared average return is (847/846)(.00257)2=.0000066. The variance term is 
(.03095)2=.0009579, which is much greater than the squared mean return. 

Sample Distributions and 
Estimation Error

• Sample mean is distributed N(,2/T)
• Example: C.I. for the mean of Japanese weekly stock returns again.

Point estimate of  = 0.257%

Point estimate of 2 = 3.095%

Using the sample estimates: SE( ) = s/T1/2 = (.03095)/(847)1/2 = .00106 (or .11%).

95% CI is given by (.037%,.467%). It is significantly different that zero.

But, the CI is quite wide. After 17 years, the expected return, , is measured with
low precision.
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• Sample variance is distributed (T-1) s2/2 ~ 2
T-1.

• To derive a C.I. for the variance, let rewrite the standard confidence
interval for a chi-squared variable:

P(2
v,1-/2 < 2

v < 2
v,/2) = P(2

v,1-/2 < (T-1)s2/2 < 2
v,/2) = 1- 

After some easy algebra, we derive:

P[(T-1)s2/2
v,/2 < 2 < (T-1)s2/2

v,1-/2] = 1-.

• We derived:

P[(T-1)s2/2
v,/2 < 2 < (T-1)s2/2

v,1-/2] = 1-.

Example: C.I. for variance Japanese weekly stock returns.
We want to calculate a 95% confidence interval for 2 --i.e., =.05. 
We get: 2

846,.975=767.3 and 2
846,.025=914.8.

P[(846)(.03095)2/(914.8)< 2 < (846)(.03095)2/(767.3)] = .95
P[ .000886 < 2 < .001056 ] = .95

=> a 95% C.I. is given by (2.98%,3.25%).

The CI is quite compact around the sample point estimate. Compared to the sample
mean estimate,  is measured with accuracy.

Note: Usually T is larger than 30. We can use the normal approximation to calculate CIs 

for the population . For the Japanese data, we estimate the S.E. for the sample SD:  
SE(s) = s/(2 T)1/2 = .03095/(2 847)1/2 = .000752  (or .075%).
A 95% CI for  is given by (2.945%,3.245%). (Good approximation!) 



4

Empirical Validation

• CLM and the usual empirical work present the empirical properties of 
stock returns.

• They are not really consistent with either the simple normal or the 
lognormal models.

• You need to note the differences and see how things might be 
improved.

• CLM’s Chapter 2 considers the predictability of asset returns.
• Q: Can past return realizations tell us anything about expected future 

returns?
• The efficient markets hypothesis (EMH) is a first attempt to address 

the predictability issue.

General Problem

• Recall the Japanese weekly returns example. Even with 17 years of 
weekly information, returns are estimated with low precision.

• Estimating means with precision requires a very long T. We don’t 
have that long history. 
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EMH

• Earliest known version:
“When shares become publicly known in an open market, the 
value which they acquire there may be regarded as the judgement 
of the best intelligence concerning them.”

- George Gibson, The Stock Exchanges of London Paris and New 
York, G. P. Putnman & Sons, New York, 1889

• Fama (1970)
“A market in which prices always `fully reflect` available 
information is `efficient`.”

• Malkiel (1992)

“A capital market is fully efficient if it correctly reflects all 
information in determining security prices.  Formally, the 
market is said to be efficient with respect to some information 
set… if security prices would be unaffected by revealing that 
information to all market participants.  Moreover, efficiency 
with respect to an information set… implies that it is impossible 
to make economic profits by trading on the basis of [the 
information in that set].”
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In an efficient market, prices should be random.

• Let the price of a security at time t be given by:

Pt = E[V*|It] = Et V*

• The same equation holds one period ahead so that:

Pt+1 = E[V*|It+1] = Et+1 V*

• The expectation of the price change over the next period is:

Et[Pt+1 - Pt] = Et[Et+1 V* - Et V*] = 0

• sine It is contained in It+1 => Et[Et+1 V*] = Et V* (by the law of 
iterated expectations).

Discussion

• The second sentence of Malkiel’s definition expands Fama’s 
definition and suggests a test for efficiency useful in a laboratory.

• The third sentence suggests a way to judge efficiency that can be used 
in empirical work.
– This is what is concentrated on in the finance literature.
– Examples: mutual fund managers profits if they are true economic 

profits then prices are not efficient with respect to their 
information.

– Difficult to test for good reasons we will discuss.
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Versions of Efficiency

• Efficiency can only be defined with reference to a specific type of 
information. Three classes of information:

(a) Historical sequence of prices (weak form EMH).

(b) Public records of companies and public forecasts regarding 
the future performance and possible actions (a + b: => semi-
strong form EMH).

(c) Private or inside information (a + b + c => strong form EMH).

Violations of Efficiency

• Technical traders devising profitable strategies (weak EMH) 

• Reading a newspaper and devising a profitable trading strategy (semi-
strong EMH)

• Corporate insiders making profitable trades (strong EMH)

• Q:  Can markets really be strong-form efficient?

• Perfectly rational factors may account for violations of EMH:
– Microstructure issues and Trading cost

– Rewarding investors for bearing certain dynamic risks.

– Time-varying expected returns due to changing conditions can generate 
predictability
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What Does “Profitable” Mean?

• We’re talking about economic profits, adjusting for risk and 
costs.
– We need a model for risk adjustment. Results will be conditional 

on the model.

• That is, tests of efficiency are joint tests of efficiency and 
some asset pricing model, or benchmark.
– For example, many benchmarks typically assume constant 

“normal” returns.  This is easier to implement, but doesn’t have to 
be right.  Hence rejections of efficiency could be due to rejections 
of the benchmark.

The Tests

• Most tests suggest that if the security return (beyond 
the mean) cannot be forecasted, then market 
efficiency is not rejected.
– With the wrong asset pricing model, we can wind up 

rejecting efficiency.  It would be easy to find (de-
meaned) returns to be forecastable if we had the wrong 
mean.



9

Martingales and Fair Games

• Martingale: A stochastic process PXt is a martingale if:

E[Pt+1 | t] = Pt or Et [Pt+1] = Pt

Submartingale if E[Pt+1 | t]  Pt, and supermartingale if E[Pt+1 | t]  Pt

• Fair game model: A stochastic process rt is a fair game if:

E[rt+1 | t] = 0

=> if Pt is a martingale or pure random walk, (Pt+1 – Pt) is a fair game

Note: Only referring to expected values! Nothing about variances of 
shocks.

• The Martingale process is an AR(1) process with the AR coefficient 
equal to 1. A non-stationary process.

• LeRoy (1973), Lucas (1978): The Martingale condition is neither a 
necessary nor a sufficient condition for rational expectations models of 
asset prices.

• But, we can consider the martingale as an important starting point.
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The Random Walk Hypotheses

• Random Walk (RW): A stochastic process pt is a RW if:

pt = μ + pt-1 + εt -where pt = ln(Pt)

t+1  D (0, 2),  Et[t+1] = 0, Et[2
t+1] = 2

=> rt = μ + εt = Δ pt

Note: A RW is a martingale with constant variance of the innovations.

• RW1: εt is independent and identically distributed (iid) (0, σ2). Not 
realistic. (Old tests: Cowles and Jones (1937).

• RW2: εt is independent (allows for heteroskedasticity). Test using 
filter rules, technical analysis. (Alexander (1961, 1964), Fama (1965).

• RW3: εt is uncorrelated (allows for dependence in higher moments). 
Test using autocorrelations, variance ratios, long horizon regressions.

Autocorrelation Tests

• Assume rt is covariance stationary and ergodic. Then

γk = cov(rt, rt-k)

ρk = γk / γ0 .

With sample estimates gk and rk.

• Under RW1 (and some assumptions)

E[rk] = -(T-k)/(T(T-1))+O(T2)

Cov[rk,rl] = (T-k)/T2 + O(T2) (if k=l≠0)

= O(T2) (otherwise)

T1/2 rk→N(0,1)

Note: The sample correlation coefficients are negatively biased in 
finite samples. See Fuller (1976).
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• Box-Pierce Q-statistic tests a joint hypothesis. The first m 
autocorrelations are equal to zero. 

That is, H0: ρ1= · · · = ρm = 0. 

The usual Q-statistic version is the Ljung-Box (1978) version. (It has 
better small sample properties.)

. Under RW1 and using the asymptotic distribution of rk,

Q = T(T+2) Σk(rk/(T-k)) ~ χ2
m

Variance Ratios

• Intuition. For all 3 RW hypotheses, the variance of RW increments is 
linear in the time interval. If the interval is twice as long, the variance 
must be twice as big. Under RW1, the 2-period variance ratio satisfies

VR(2) = var(rt (2))/(2 var(rt)) = var(rt + rt-1)/(2 var(rt))=2σ2/ 2σ2 = 1.

• If rt is a covariance stationary process then

VR(2) = (var(rt) + var(rt-1) + 2cov(rt, rt-1 ))/(2 var(rt) 

= (2σ2 + 2γ1)/2σ2 = 1+ ρ1

Three cases:

• ρ1 = 0 => VR(2) = 1

• ρ1 > 0 => VR(2) > 1 (mean aversion)

• ρ1 < 0 => VR(2) < 1 (mean reversion)



12

• The intuition generalizes to the  q−period case (under stationarity):
VR(q) = var(rt(q))/(q var(rt)) = 1+2 Σk (1−(k/q)) ρk

rt (q) = rt + rt-1 + · · · + rt-q+1

The VR(q) is a particular linear combination of the 1st (q-1) 
autocorrelation coefficients (with linearly declining weights).

Note 1: Under RW1, V R(q) = 1.

Note 2: For stationary and ergodic returns with a 1-summable Wold 
representation
rt = μ +Σj=0 ψj εt−j, εt ~iid(0,σ2), ψ0 = 1 , Σ j |ψj| < ∞

it can be shown that
limq→∞ VR(q) = σ2 ψ(1)2/γ0 = lrv(rt)/var(rt)

= long-run variance/short-run variance

Note 3: Under RW2 and RW3, VR(q) = 1 provided
1/T Σt var(rt) → ¯σ2 > 0

• Lo and MacKinlay’s Test Statistics

Lo and MacKinlay (1988, 1989) present a number of test statistics for 
testing the RW hypothesis based on the estimated variance ratio:

Est. VR(q) =  Est. var(rt(q))/(q Est. var(rt))

The form of the statistic depends on the particular random walk model 
(RW1,RW2 or RW3) assumed under the null hypothesis.

Check CLM for the details.
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Other Tests

• Cross-autocorrelations and Lead-lag Relations: Lo and MacKinlay 
(1990).

• Long Range Dependence

– ARFIMA models: Granger and Joyeux (1980) and Hoskings 
(1981).

– Rescaled Range (R/S statistics): Mandelbrot (1972, 1975), 
Mandelbrot and Wallis (1969).

• Mean Reversion Tests: Changes in returns must be negatively serially 
correlated at some frequency for the mean correction to occur. 
predictable. Fama and French (1988). 

Empirical Evidence: 
Autocorrelations and VR tests

• Tests based on CRSP value-weighted and equal weighted indices, 
individual securities from 1962-1994.

• Daily, weekly and monthly returns from VW and EW indices show 
significant (positive) autocorrelation. 

• VR(q) > 1 statistics reject RW3 for EW index but not VW index.

Market capitalization or size may be playing a role. Rejection of RW 
stronger for smaller firms. Their returns more serially correlated.

• For individual securities, VR(q)<1, suggesting small and negative 
correlations (and not significant). 

• Q: How can portfolio VR(q) > 1 when individual security VR(q) < 1?


